Constructing Priors for Geophysical Inversions Constrained by Surface and Borehole Geochemistry

Abstract

Prior model construction is a fundamental component in geophysical inversion, especially Bayesian inversion. The prior model, usually derived from available geological information, can reduce the uncertainty of model characteristics during the inversion. However, the prior geological data for inferring a prior distribution model are often limited in real cases. Our work presents a novel framework to create 3D geophysical prior models using soil geochemistry and borehole rock sample measurements. We focus on the Bayesian inversion, which enables encoding of knowledge and multiple non-geophysical data into the prior. The new framework developed in our research comprises three main parts, namely correlation analysis, prior model reconstruction, and Bayesian inversion. We investigate the correlations between surface and subsurface geochemical features, as well as the correlation between geochemistry and geophysics, using canonical correlation analysis for the surface and borehole geochemistry. Based on the resulting correlations, we construct the prior susceptibility model. The informed prior model is then tested using geophysical forward modeling and outlier detection methods. In this test, we aim to falsify the prior model, which happens when the model cannot predict the field geophysical observation. To obtain the posterior models, the reliable prior models are incorporated into a Bayesian inversion framework. Using a real case of exploration in the Central African Copperbelt, we illustrate the workflow of constructing the high-resolution 3D stratigraphic model conditioned on soil geochemistry, borehole data, and airborne geophysics.

Publication
Surveys in Geophysics
Xiaolong Wei
Xiaolong Wei
Postdoctoral Research Fellow

I am a postdoctoral scholar at Stanford Mineral-X .